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Mechanical systems acted on by gyroscopic forces with incomplete dissipation are investi~
gated. One of the ways of arriving at such systems is by investigating the stability of
steady-state motions, Conditions whose fulfillment implies that the dissipative function en-
sures asymptotic stability, are derived. An example is considered.

1. Asymptotic stability of the equilibria of gyroscopic systems,
Let ‘a holonomic system with steady-state constraints and a force fuanction not explicitly de-
pendent on time, be acted on by the gyroscopic forces I, and by the dissipative forces F,
of the form

ar .
rg":z Y595 F, ’—"a—q"—‘— (‘rt}-=—'rﬂ==const), (i=1,...,n)
j=t
-where g, are generalized coordinates and F is a negative definite quadratic form of genera-
lized velocities,

n
F=- %‘ 21 Bis9s'9; (B;j = const)
Let us introduce the Lagrangmn

n
L=T-+ Y djgu+U @y —djf =15
i,j=1
Here T and U denote the kinetic energy and force function of the system.

The squations of motion can then be written as
d &L oL aF
dr By, " eq, = dqy a.n
We assume that the system is in the equilibrium state ¢, = 0, Egs. (1.1) are then equa-
tions of perturbed motion.
The first-approximation Eqs. are
™
d [a8°L 8L aF . o ey xe .
—3? (—a—q-r) — a?z = 5—{;;- y 6‘[0 == 5'T “}" iz dh' ‘Lﬂ, + 6'{! (1--)')
3=l
Here 52T and 52U are the sets of the second order terms in the expansions of the kine
tic energy and force function.
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Let §2U be a negative definite quadratic form g, . We know [1] that in this case the equi~
librium position is stable.
By virtue of Eqs. (1.2} we have
d/de (8T —8U0)=F
Since 32T — 8 2U is a positive definite function and F is always negative (neither funce
tion depends explicitly on time), it follows by the Barbashin-Krasovskii theorem on asymp-
totic stability [2 and 3] that the equilibrium is asymptotically stable by virtue of the first«
approximation system if £gs. (1.2) do not allow trajectories along which F = 0.
Let the rank of the quadratic form F be p. We then have the represeantation
== lo/P + .t (@)

where qSl' denote certain linearly independent forms of generalized velocities,

n
9, = Z i ¢;; =const (i=1,...,.p)
=t
If these exist trajectories along which F = (, then on these trajectories
P
. aF <!
=0, e P, ==
W o1y .Z, b =0 (1.3)
i-=2
so that
d 8°L 8L 0 .
i W"E}::—: {i=1,...,n) (1.4)

The characteristic equation of system (1.4) has no zero roots, so that Eqs. (1.3) and
(1.4) imply that

n
Q== D) ¢, = (i=1,....p) (1.5)
’::
Let us rewrite Egs. (1.4) in the Hamiltonian form,
g, =2aIl/ap, P =—0H[dy, {(H =8°T — §°0) {1.6)

The function H is the positive definite quadratic form in Gyreees q,; Pyreens p,- In this
case {according to (4 and 5]) the roots of the characteristic equation are ell purely imagin=
ary, i.e. of the form :t)\ki; moreover, there exists a canonical transformation 9,=4 (x,, 7 ),
p; = py {z;, ¥;) which transforms H to the normal form

n
I\ .
H=_ 3+ AR
iz=}
The above transformation is linear; its coefficients are constant and (in the general
case) complex. Let us express it in matrix form as

qu QIE £8q./8x,  dq.f3y,
= B N B = ¢ ? e 2
JP ¥ i{t}pi 19r;  3p,]dy; (1.7)
In the normal variables % ¥; Egs. (1.6) become
Ii'::yi, y":—:-—liz.’tl (1.8)
Hence
x" ==kl 1.9)
Fgs. (1.5) with allowance for {(1.7) and {1.8) can be written as
D)X +D,X =0 (1.10)

Di=|d;l=Cldq,/3z;ll, D:=Qd, ,;l=Claq/0y;] (k=1,..,p i,j=1,..,n)

Let £ A i,..., 2 Ayi be all the roots of the characteristic equations with the maltiplici-
ties f1,.y n,. We shall denote the quantity 4 corresponding to the root Aji by the symbol
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Ay ) Eqgs. (1,9) and (1.10) in this notation become

(F A0 =~ (1) (i=1,...,n) (1.11)
H

¥
[
‘2” E % A) +dpy s (5 A T=0  (vy=n +...+nzm=1,...,p) (1.12)
- avz_l
Any solution of Eqs. (1.11) and (1.12) is of the form
z; (A)= u; (A exp (Ait) + "5(7“1) exp{— A,it) (i=1,...,n)

Substituting this solution into Egs. (1.12) and recalling that the functions exp (X, it) and
exp ()\mit) ()\k # )Lm) are linearly independent, we obtain the following necessary and sui-
ficlent conditions for the existence of a nonzero solution of Eqs. (1.11) and (1,12

rDRYl=n, DAY=[d ;+¥id, .l =1, pi=v_ +1,...,v) {1.13)

On fulfillment of Eqs. (1,13), system (1.4) disallows nonzero trajectories along which
F = 0, and the equili brium is asymptotically stable by virtue of the first approximation sys-
tem, and hence by virtue of complete system {1.1).

1-[D N N« ny then (for example) in the case where the rank p is smaller than n;, Egs.
(1.11) and (1.12) allow a nonzero solution, and the first approximation implies the absence
of asymptotic stability.

Taking into account (1.7), we can express the matrix D ();) in the form

DRY)=CM (), M) =19a,/02; () + ihDq,, /0y, (M)

If r{C] is equal to n, then Eqs. (1.5), and therefore Eqgs. (1.12), allow a trivial solution
only, so that Egs. (1.13) are fulfilled. This means that r(hl(/\l)] =n;.

Computing the minors of order n; of the matrices D (A}), we obtain certain polynomisls
P, in the variables c, of degree not exceeding . Since r{M ()\l)] = nj, none of the polyno-
mials P, vanish identically. Hence, there exist real cy such that all ; # 0. In this case the
equilibrium is asymptotically stable.

We have thus proved the following statement,

Theorem. Let the expansion of the force function of the gyroscopic system in the
neighborhood of the equilibrium position begin with a negative definite quadratic form. In
the case where the largest multiplicity s of a root of the characteristic equation of system
(1.4) does not exceed the rask p of the dissipative function, the equilibrium is asymptotical-
ly stable by virtue of the complete system of equations, provided the rank of each matrix

Cipe e Cpm | o, o

. L o Y (m, j-=1,...,n)
DAY=l ..... 1aﬁmp*lﬂawun (U=r+ . .dn_+ 1. mt. +n)
€prv v+ Cpn

is equal to the multiplicity of this root. This is the necessary and sufficient condition for
asymptotic stability in the first approximation. The addition of any dissipative forces with
a dissipative function of rank smaller than s does not render the equilibrium stable by vir-
tue of the first approximation. On the other hand, there always exists a dissipative function
of rank s such that the equilibrium is asymptotically stable.

2. Asymptotic stability of steady-state motions. Let us consider a
holonomic mechanical system whose kinetic energy T and force function U do not depend
explicitly on time and on the last k generalized coordinates g,,_y 4, se++s ¢,» We assume that
the indices r and s vary from 1 to 5 — &, and the indices m and [ from n — & + 1 to n. Let
the system be acted on by dissipative forces with the dissipative function

n
F=—1 3 B e>H
t,j=n—p+1
negative-definite with respect to its variables, and by some constant forces F, s 4; seres Fp
such that the system allows steady-state motion [6],
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7,=0, ¢,=0m 2.1
It is shown in [7] that when the quadratic part of the expansion of T — U in the neighbor-
hood of steady-state motion (2.1) is positive definite with respect to the variations of the
coordinates and velocities, motion (2.1) is asymptotically stable if a system with the kine-
tic energy T “given by

1 - ..
= Z [Z %rs9r 9, + E a9, '710]
r,s rl
and the force function U’ of the form
N R
U=U + Z amlqmo I

m,l
does not have motions in the neighborhood of the equilibrium g = 0 such that

N . | .
2—' % ms%s + ?—-J 8Ty = 0, Tnpit =« 0 s =Qpy, = 0 (p>4h) (2.2)
s

The variations of Egs. (2,2) can be written as

. 0aml
Z @) + ’Z (W)o 7,90 ==0, Unpi1 =« = =0 (2.3)
r , &

The first-approximation equations for a system with the Lagrangian L “= T“4 U’ become
d 96L i
dr aq,;  “ag, =90 (2.4)
The reasoning of Section 1 applies, in slightly altered form, to Egs. (2,3) and (2.4). The
conditions for asymptotic stability analogous te (1.13) are

99, /0x; (1) + ikSdg, [ By; (A))
—(2))? 89,/ 3y; (M) + iABq, [ z; (A))

Here i\ )’ ls the root of the characteristic equation of system (2 4), n}’is the multiplicity
of this root, C’is the matrix of coefficients of Egs. (2.3), and x‘ A y, are the normal varia-
bles of Egs. (2.4).

Let the dissipative function F be independcut of the cyclic coordinates. The equations
of motion for the noncyclic coordinates are the Routh Egs.

d OR oR 8U 'oF
g, Ty, T ag, T o =Rt Ri— R @3)

Here R, is the positive definite quadratic form of the velocities, R, is the linear form
of the velocities, and R_ depends on the coordinates only.

Eqs. (2.5) are of a form analogous to (1.1) , so that if the expansion of U — R_ begins
with a negative definite quadratic form of the variables ¢,, then the results of Section 1 can
be applied to the investigation of asymptotic stability.

Remark. The proof of Lemma 3.1 in {8] contains an inaccuracy. The lemma should
be altered to read L. e m m a 3.1. If the introduced di ssipation renders the equilibrium
asymptotically stable, then none of the coefficients v, , 2,0, v, 2are equal to any one of
the numbers )\ _2..., A, 2 although some of Vk+12""' v, * may comcide.

The arguments of [8] which follow this lemma remain valid only if all the new frequencies
Vit z..., v2 are distinct.

r[D (Ap’)] =n/, D(;\-")=C’"

3. Example. Let us consider a mechanical system in the form of a solid body with a
pendumlum suspended from its point O (i.e. from its center of mass). We assume that the
system is not acted on by any extemnal forces. Let Ox x,x, be a stationary coordinate sys-
tem, and Oy,y,y, a movable coordinate system with axes s directed along the principal axes
of inertia of the body. The pendulum is suspended in such a way that the motion occurs in

the plane Oy, y y o+ We denote the angle between the pendulum and the negative direction of
the Oyz-axis by a. Acting at the axis of the pendulum suspension are the moment of viscous
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friction forces k o’ and the moment of elastic forcea et

Let us introduce the following notation: x ‘ are the coordinates of the center of
mass of the system with respect to Ox x x; q&, J/ 0 are the Euler angles defining the pos-
ition of Oy, ¥ ,74i Py Pp P, are the projectmns of the instanteneous angular velocity of
the body on the axesy_, Yy ¥ A, A, A, are the moments of inertia of the body with
respect toy,, ¥,, ¥4 lis the iengtlh of.the pendulum; M is the mass of the body; m is the
mass of the pendalum.

The coordinates i, x
in the form {2.5).

The steady-state motion under investigation is described by Egs.

=n/2 @=0, a=0, Y=¢ =0, (r)=()h (=123
Assuming that the cyclic impulses are not perturbed, we set
O=n/2+E, ¢o=4§, o=1E (3.1)

for the perturbed motion.

The conditions of negative definiteness of § AU — R) are given by the inequalities

0¥ (By —By) >0, o (B,—B)>0, (Bs— B (x—a0?)-- d0?>0
B,=A,+a By=4,+ta By=A4;+a, a= Mml2/ M-+ m

The dlssxpanve function is of the form F = — %k (53 )2,

Setting f f = O for the perturbations of the noncyclic coordinates in the Routh equa-
tions, we obtain in the first approximation a system of the form (1.4) with the function

8L = s [By (8))? + By (5,0 + 207158:5, + (By — Ba)o®s? + By - Byet?
Ve =B, + B, — By

1', xn', xs'are cyclic, and the equations of motion can be written

In addition, Eg.
1= 0y (& Fol) =0 3.2)
will hold.
In nomal variables Eq. (3. 2) becomes

(Bg—B;)(B«,—B)} Bt \}
71"{ [meBs i ( By~ Bs 4}»),1}3:2“*‘( Bl"‘“’+ 4 }y, =20

This implies that D(A ) = 0 and that condition (1.13) is not fulfilled. Hence, the steady-
state motion is not asymptotically stable by virtue of the first-approximation system.
Differentiating Fq. {3.2) with respect to time, we find by virtue of the equations of per-
turbed motion that
Y12 (B — By)o (5" — o) = 0
In the first approximation
py 7= (!)§2 -+ §1', P =7 @ + !’] s Ps = gi. - w’él ('l' = 0)
Hence, on the trajectories along which F = 0 we have in the first approximation
Py = pg = 0, Py = const
The proof of the Barbashin-Krasovskii theorem mentioned above implies that if the
equations allow trajectories along which F = 0, then the motion tends asymptotically either
to zero, or to one of the indicated trajectories. Hence, in the first approximation foray, , #
# 0 all the motions (3.1) tend asymptotically to rotation of the system about the axis y,
which has a constant direction in space.
The author is grateful to G.K. Pozharitskii for his valuable comments on the present

paper.
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