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Meohsnical systems nctcd on by gyroscopic forces with incomplete dissipation are investi- 

gated. One of the ways of arriving at such systems is by investigating the stability of 
steady-state motions. Conditions whose fulfillment implies that the dissipative function en- 
sures asymptotic stability, are derived. An example is considered. 

1. Acrymptotfc stability o? the epuilfbrta of ggroscoplc systems. 
Let ‘a holonomic system with steady-state constraints and a force function not explicitly de- 

pendent on time, be acted on by the gyroscopic forces r, and by the dissipative forces F, 
of the braI 

?I 

wksn, q, are generalixed coordinates and F is a negative definite quadratic form of genera- 

li.sed velocities, 
n 

F= - ~ ~ p*jql’qj’ 

i.j=L 

CP,j= const) 

Let us introduce the Lagrangian 
n 

L == T -+ 2 cfii’qiqj’ + ff 

i, j=1 

(dii’ - dji’ = yrj) 

Here T and (I denote the kinetic energy and force function of the system. 

The eqaations of motion can then be written as 
d i?L t?L i3F 

-?_y--=y 
dr dqt 39, aq, 

(1.1) 

We assume that the system is in the equilibrium state q, = 0. Eqs. (1.1) are then equa- 

tions of perturbed motion. 

The first-approximation Eqs. are 

diYL aF 
--&yG’ 

6=L = 6’T -+ ; d,j’q*qj’ + 6’u (1.4 
5, j-1 

Here a2 7’ and 6 xU are the sets of the second order terms in the expansions of the kine 

tic energy and force function. 
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Let FZfJ be a negative definite quadratic form 4. We know [ll that in this case the equi- 

librium position is stable. 

By virtue of Eqs. (1.2) we have 

d/&(&T--@U)= F 
Since 82 T - 6 %!I ie s positive definite function and F is always negative (neither func- 

tion depends explicitly on time). it follows by the Barbasbin-Kraaovskii theorem on asymp 
totic stability [2 and 37 that the equilibrium is asymptotically stable by virtue of the first - 
approximation system if Eqs. (1.2) do not allow trajectories along which F zs 0. 

Let the rank of the quadratic form F be p. We then have the representation 

P = -l/r [qt’)r + . ..i- (q$‘)zl 

where r$,‘denote certain linearly independent forms of generalized velocities, 
I) 

‘pi’ = 2 C,j’lj’. cij = conzt (i=l,...,p) 

If these exist trajectories along which F = 0, then on these trajectories 

so that 

(1.3) 

The characteristic equation of system (1.4) has no zero roots, so that Eqs. (1.3) and 
(1.4) imply that 

n 

(i = 1 9 . . ..P) (1.5) 

Let us rewrite Eqs. (1.4) in the Hamiltonian form, 

45’ = dH I dp,, y*’ = --Miffs, (fi =6’T - cw) (1.6) 

The function H is the positive definite quadratic form in (II,.,., q, ; pIr..., p,‘. In this 

case (according to [4 and 53) th e roots of the characteristic equation are all purely imagin- 
ary, i.e. of the form fh,i; moreover, there exists a canonical transformation q, = qf (z,, y,), 
pt = p, (;ri, yi) which transformsH to the normal form 

The above transformation is linear; its coefficients are constant and (in the general 
case) complex. Let us express it in matrix form as 

In the normal variables r,, y, Eqs. (1.6) become 

=1 - = ?I “i’ yl’ z.z - k*$rt 
(1.8) 

HCIICC 

=t 
** Z - li?Xf 

(1.9) 

Eqs. (1.5) with aflowsuce for (1.7) and (1.8) can be written as 

i),x -+- I),X’ = 0 (iSO) 

DI=fid~jff=C~/dQ~/dzj~~’ Dn=nd,...+jll=C!dri,/a~j/i (k=l,...,p; ‘,j==‘l..-rn) 

Let fh ,i,..., f&i be all the roots of the characteristic equations with the mnltiplici- 

ties n I,..., sk. We shall denote the quantity A corresponding to the root Ali by the symbol 
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AtA+ Eq* (1.9) and (f.10) in tbf8 notation become 

(xt.(&))” = - x,rrt (I,) 
I; vi 

(i = 1, . . ., n) (1.11) 

2 z 
I=- 1 S-vt+ 

jdl)ljfj (‘0 + ‘m, u+j (xj (A,))‘] 5 0 (vr = “1 + . . . f n,; m = I, . . ., p) (1.12) 

Any 8olation of Eqs. (1.11) aad (1.12) is of the form 

zj(~~)= Uj (Al)t?Xp (litit)+ I-j(?*~)CX~ (- X,it) (i= i *..., n) 

Substituting this solution into Eqs. (1.12) and recalling that the functions exp (A,$) and 

exp (AX,it) (A, f A,) are linearly independent, we obtain the following necessary and suf- 

ficient condition8 for the exi8tence of a nonzero solution of Eqs. (1.11) and (1.12): 

r ID (h,)l = RI* D(3..r)=[“Irn~ + X&d,,, *+jIj (ra= i,. . ., P: i=v~__~ + f, . . -f yt) (i*i3) 

On fulfillment of Eqs. (1.13), system (1.4) disallows nonzero trajectories along which 
F = 0, and the equilibrium is asymptotically stable by virtue of the first approximation ays- 

tern, and hence by virtue of complete system (1.1). 

If rfi) (Al )] < A f, then (for example) in the case where the rank p is smaller than nf, Eqs. 

(1.11) and (1.12) allow a nonzero solution, and the first approximation implies the absence 

of asymptotic stability. 
Taking into account (1.7), we can express the matrix D (Al ) in the form 

D (A,) = CM (h&S f+f @1) = II a(?, I az j (J+f) + i&aqm I ‘Yj (k,) I 
If r[C] io equal to n, then Eqs. (1.5), and therefore E a. 

only, so that Eqs. (1.13) are fulfilled. This means that r 9 
(1.12), allow a trivial solution 

~(Xfjl= nf . 

Computing the minors of order af of the matrices D (Al), we obtain certain polynomials 

P, in the variables cfit of degree not exceeding uf. Since r[M (Xi)] = nf, none of the polyno- 

mials P, vanish identrcally. Hence, there exist real c,, such that all P, f 0. In this case the 

equilibrium is asymptotically stable. 

We have thus proved the following statement. 
T h e o r e m. Let the expansion of the force function of the gyroscopic system in the 

neighborhood of the equilibrium position begin with a negative definite quadratic form. In 
the case where the largest multiplicity s of a root of the characteristic equation of system 
(1.4) does not exceed the rank p of the dissipative function, the equilibrium is asymptotical- 
ly stable by virtue of the complete system of equations, provided the rank of each matrix 

is eqaaf to the multiplicity of this root. This is the necessary and sufficient condition for 
asymptotic stability in the first approximation. The addition of any dissipative forces with 
a diaoipative function of raak smaller than a does not render the equilibrium stable by vir- 
tue of the first approximation. On the other hand, there always exists a dissipative function 
of rank s such that the equilibrium is asymptotically stable. 

2. Asymptotic stability of steady-state motions. Let us consider a 

holonomic mechanical system whose kinetic energy T and force function II do not depend 
explicitly on time and on the last k generalized coordinates qn_k+1 ,..., Q,. We assume that 

the indices r and a vary from 1 to a - k, 8nd the indicee m aud I from n - k + 1 to n, Let 
the sy8tem be acted on by dissipative forces with the dissipative function 

n 

F = - + 2 ptiqi’yj- (P>k) 

*.j=ny+l 
negative-definite with respect to its variables, aad by some constant forces F,,+, ,**** 
such that the system allows steady-state motion [6), 

F,, 



Asymptotic r&&iliy of the equilibria of gyror~opic systems 309 

Q, = 0, 4’ = cfrnO 
It is shown in [7] that when the quadratic pz of the expansion of T 

(2.1) 
- (I in the neighbor 

hood of steady-atate motion (2.1) is positive definite with respect to the variation6 of the 
coordinates and velocities, motion (2.1) is asymptotically atable if a system with the kine- 

tic energy T ‘given by 

and the force function II ‘of the form 

u’ = U + X om19m0’qlj 
m. 1 

does not have motions in the neighborhood of the equilibrium q, = 0 such that 

& &7,’ + 7 am,f7,fJ’ = 0. Q,,_p+l= - . . = q,_j; -0 (p),k) 
s 

(2.2) 

The variations of Eqs. (2.2) can be written as 

qn_p+t = . . . = qn_k = 0 (2.3) 

The first-approximation equations for a system with the Lagrangian L ‘= T’+ U’ become 

The reasoning of Section 1 applies, in slightly altered form, to Eqs. (2.3) and (2.4). The 
conditions for asymptotic stability analogous to (1.13) are 

r In (Ap’)l = y’, D (hi) = C’ II aQi I azj (2*,‘) + iA,‘@, I aYj (Ai) 
- (J.,‘)’ aQ, / ayj (A,‘) + iA,‘i9qi / azj (Ai) I 

Here ih l’is the root of the characteristic equation of system (2.4), nl’is the multiplicity 
of this root, C’io the matrix of coefficients of Eqs. (2.3). and x,‘, y,‘are the normal varia- 

blee of Eqe. (2.4). 

Let the dissipative function F be independcut of the cyclic coordinatea. The eqaations 

of motion for the noncyclic coordinates are the Routh Eqa. 

(2.5) 

Here Rx is the positive definite quadratic form of the velocities, R, in the linear form 

of the velocities, and Ro depends on the coordinates only. 

Eqs. (2.5) are of a form analogous to (1.1) , so that if the expansion of II - R, begina 

with a negative definite quadratic form of tbe variables q,, then the results of Section 1 can 
be applied to the investigation of asymptotic stability. 

R e m a r k. The proof of Lemma 3.1 in [8] contains an inaccuracy. The lemma &ould 
be altered to read L e m m a 3.1. If the introduced dissipation renders the equilibrium 
asymptotically stable, then none of the coefficients vk+ z,..., ho 2 are equal to any one of 

the numbers A t?..., X, ? although some of vk+t2 ,..., vnl may coincide. 

The arguments of [8] which follow his lemma remain valid only if all the new frequencies 

vk+t2,..., V, are distinct. 

3. Example. Let us consider a mechanical rrystem in the form of a solid body with a 

pendumlum suspended from its point 0 (i.e. from ita center of maea). We atomme that the 

system is not acted on by any external forces. Let Ox,xlx 

J 
be a stationary coordinate sys- 

tem, and Oy , yzys a movable coordinate system with axes erected along the principal axes 
of inertia of the body. The pendulum is suspended in each a way that the motion occura in 

the plane Oyt yz. We denote the angle between the pendulum and the negative direction of 
the 0y2-axis by ct. Acting at the axia of the pendalum emapendon are the moment of viscoaa 
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friction forces k a’ and the moment of elastic forces %a. 

Let no introduce the following notation: x ,; x ; 

5 

xf ‘are the coordinatea of the center of 

mass of the syystem with respect to 0x1x2x3; f$, (8 are the Euler angles defining the pos- 

ition of Oy, y2y3; ptr py p3 are the projections of the instantaneous angular velocity of 

the body on the axes y , y,, y ; A , A 
4 is the lengh ? 

A J are the moments of inertia of the body with 

respect to yt. Y,* Y s. o the pendulum; M is the mass of the body; m is the 

mass of the pendulum. 

The coordinates q%* zt: xz: x3 ‘are cyclic, and the equations of motion can be written 

in the form (2.5). 

The steady-state motion under investigation is described by Eqs. 

e=r(/2, q=o, a=O, 1/)‘=ICtJ’=Q, (xi’) =k(Si’jU (i-1-.1,2,3) 
Assuming that the cyclic impulses are not perturbed, we set 

8 = l-t I2 + Et* cp = Ez, a = t3 (3.1) 
for the perturbed motion. 

The conditions of negative definiteness of 6 2(21 - Ro) are given by the inequalities 

OS (BP - 8,) > 0, i@ (B, - 8,) > 0, (BP - 3,) (x - nwZ) _- anme > 0 

B1 = AI -I- a, B,= Aa -I- a, B, = A3 f a, a -= dfmP / i)I -i m 

he dissipative function is of the form F = - Y,k ([,‘)2. 
Setting e3 = fa’= 0 for the perturbations of the noncyclic coordinates in the Routb equa- 

tionn, we obtain in the first approximation a system of the form (1.4) with the function 

In addition, Eq. 

will hold. 

In normal variables Eq. (3.2) becomes 

(Bs - S,)(33, - 34f u.? I - -- - _-__ 
& - Bs 413, f ( 

.@ + 

This implies that D(A t) = 0 and that condition (1.13) is not fulfilled. Hence, the steady- 

state motion is not asymptotically stable by virtue of the first-approximation system. 

Differentiating Eq. (3.2) with respect to time, we find by virtue of the equations of per 

turbed motion that 

yrz (n, -- R,)o ($2’ - oi,,) z-2 0 

In the first approximation 

pi == o& i- &‘, pz =T 0 f 11’ , pj == g,,‘ -.- is& (if = 0) 
Hence, on the trajectories along which F E 0 we have in the first approximation 

pr =-- pa r=; 0, ps = CUllSC 

‘ihe proof of the Darbasbin-Krasovskii theorem mentioned above implies that if the 

equations allow trajectories along which F m 0, then the motion tends asymptotically either 

to zero, or to one of the indicated trajectories. Hence, in the first approximation for oyt 2 # 

# 0 all the motions (3.1) tend asymptotically to rotation of the system about the axis ya 
which has a constant direction in space. 

The author is grateful to G.K. Pozharitskii for his vaIuable comments on the present 

paper. 
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